

Curriculum Vitae

Name

Dr. V. Ganapathy

Designation

Scientist

Qualification

M.Sc., Ph.D.

Research Experience

16 years

Education

2002-2005	B.Sc. (Chemistry) Madras University, India
2005-2007	M.Sc. (Material Science and Technology) Pondicherry University, India
2008- 2012	Ph.D (Thesis: Electrocatalytic property of different carbon nanostructures and its effect on counter electrode for dye-sensitized solar cells) Pohang University of Science and Technology (POSTECH), South Korea

Work

2021-Till date	Scientist Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
2020-2020	SERB Research Scientist Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
2015-2020	DST-INSPIRE Faculty Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
2013- 2015	BK21 Research Fellow

School of Chemical Engineering,
Sungkyunkwan University (SKKU), South Korea

2012- 2013 Post-doctoral Fellow (SAINT)
SKKU Advanced Institute of Nanotechnology,
Sungkyunkwan University (SKKU), South Korea

2007- 2008 Researcher
Department of Chemical Engineering,
Pohang University of Science and Technology (POSTECH),
South Korea

Awards and Honors

- 1 2023 – **Best Poster presentation award at 2nd Indo-Japan workshop on Photovoltaics, at SSN Institutions, Chennai, Mar-9th, 2022, (Student presentation)**
- 2 2022 – **Best Paper presentation award at International conference of Advances in Energy Research (ICAER) at IIT Bombay, Dec-7th to 9th, 2022, (Student presentation)**
- 3 2020 – **Awarded SERB Research Scientist**
- 4 2018 – **Selected as a Indian Young Scientist representative for the BRICS Young Scientist Conclave meet in Durban, South Africa**
- 5 2018 – **Best Poster presentation award at National conference of Emerging Materials for Sustainable Future, Feb-09 to Feb 10, 2019, Coimbatore, India (Student presentation)**
- 6 2017 – **Outstanding Reviewer for the journal “Applied Surface Science” Nov. 2017**
- 7 2015 – **Awarded DST-INSPIRE Faculty Award**
- 8 2013/15 – **Awarded BK21 Postdoctoral Fellowship in Sungkyunkwan University, Suwon, S. Korea**
- 9 2012/13 – **Awarded Sungkyunkwan Advanced Institute Postdoctoral Fellowship, Suwon, S. Korea**
- 10 2009/10 – **Best Poster presentation award in 9th-Korea-Japan symposium on Materials & Interfaces in Ph.D., Oct-31 to Nov 3, 2010, Yeosu, S.Korea**
- 11 2006/07 – **Best Master Thesis Research Project award in M.Sc. (PG)**
- 12 2003/04 – **Second Prize in College Poster presentation in B.Sc. (UG)**
- 13 2003/04 – **First Prize in College Science day competition in B.Sc. (UG)**

Board of Studies Member

- ✓ JNTU Hyderabad, for M.Tech Nanotechnology

- ✓ SR University, for B.Tech & Ph.D in Department of Physics, Warangal

Chairperson for International Conference

- ✓ 3rd International Conference on Nanomaterials: Synthesis, Characterization and Applications, May 11-13, 2018, Kottayam, Kerala.

Research Areas of Interest

- ✓ Green hydrogen generation from Renewable Energy
- ✓ Indigenous Alkaline Electrolyzer and Redox flow battery
- ✓ Development of Opto-electronic materials and devices (Perovskites, Quantum dots and Wide band-gap semiconductors; Solar cells, Organic thin film transistors and LEDs).
- ✓ Organic-Inorganic perovskites for photodetector applications
- ✓ Si/Perovskite tandem solar cells and PERC silicon solar cells.
- ✓ Low-cost and Large-scale Conducting ink development

Research Expertise

- Design and development of Indigenous alkaline electrolyzer stack and green hydrogen production
- Solar-powered vanadium redox flow battery for off-grid electricity storage
- Perovskite and Dye-sensitized solar cells from cell to module development
- Large-scale inorganic material synthesis for Photovoltaics, Hydrogen generation and Optoelectronics devices
- Development of portable indigenous instruments for large area coatings (**Automated bar coating, Automated spray coating etc.,**)
- Flexible optoelectronic devices, Metallic and Non-metallic conducting electrodes
- Study the degradation issues of perovskite solar cell
- Thin film developments by **PVD process** (ALD, CVD, Sputtering, Thermal evaporation) and **Solution process** (Screen printing, Slot-die coating, Bar coating, spray pyrolysis and dip coating)

Research Publications

- Publications: Research articles in International Journals- 67
- Book Chapters -06
- Patent -03
 - National and International conferences -30 plus

- Publications: **Total Impact Factors (IF)–435**
Average IF/Paper-7.5

Total citation:	-2524
h-index:	-26

Sponsored Projects:

1. Large area perovskite solar cells, **2015-2025**, **Department of Science and Technology** (DST)- (TRC project)- (*ongoing*)
2. Flexible Large Area and Stable Perovskite Solar Cells, **2020-22**, **SERB Research Scientist** (SRS)- ***Completed* [Principal Investigator]**
3. Development of (perovskite) solar-powered autonomous road reflectors, **2018-21**, **Scheme for Young Scientist & Technologist (SYST)-*Completed* [Principal Investigator]**
4. Perovskite sensitizers and nanostructured metal oxide for next-generation solar cells, **2015-20**, **Department of Science and Technology** (DST)-***Completed* [Principal Investigator]**
5. Atmospheric processing of large-area perovskite solar cells with >10% efficiency, **2016-19**, **Clean Energy Research Initiative (CERI)-*Completed* [As a Member]**
6. Development of semi-transparent, 100mm x 100mm perovskite solar cell modules for functional windows in energy efficient buildings, **2015-2020**, **Department of Science and Technology** (DST)- (TRC project)-***Completed***
7. Structural stability studies of Organometal halide perovskite photovoltaic films under harsh environment conditions using Synchrotron in-situ x ray diffraction, **2017**, **Photon Factory, KEK, Japan-*Completed* [As a Member]**

Prototypes Developed

1. Perovskite solar module powered road reflector
2. 50mm X 50mm Perovskite Solar Module
3. 100mm x 100mm Carbon perovskite solar module
4. 50mm X 50mm Dye-sensitized Solar Cell Module

Patent

1. S. Sakthivel, K. Phani kumar, **V. Ganapathy**, R. Easwaramoorthi, “**Carbon quantum dots (CQDs) and method for synthesizing the same thereof for lubrication and photoluminescence**”, Indian Patent, Filled number: 202541028047, (25th March, 2025)

2. Prashant M, Reshma Dileep K, **V. Ganapathy**, Easwaramoorthi. R, “**Opto-electronic device and method of fabricating optoelectronic device**”, Indian Patent, Filled number: 202341027664, (14th April, 2023)
3. **V. Ganapathy**, Reshma Dileep, Easwaramoorthi R, S. Sakthivel, T. N. Rao, “**Method of producing highly crystalline TiO₂ nanoparticles suspension and its use in perovskite solar cell**”, Indian Patent, Filled number: 202241 (22nd Sep, 2022)
4. Shi-Woo Rhee, Karunagaran Bojan, **Ganapathy Veerappan**, Hye-Min Ra, “**Dye-sensitized solar cell including metal oxide of core shell structure**”. Granted Korean Patent No: 10-1079413 (2011).

Book Chapters

1. Ramya Krishna, Bhyrappa.P, Sudakar. C, Easwaramoorthi. R, **Ganapathy. V***, “**Oxide free material for perovskite solar cells**”, **Oxide free nanomaterials for energy storage and conversion applications**, Elsevier, (2022), 287-306
2. S. Maniarasu, V. Manjunath, E. Ramasamy, **Ganapathy. V***, “**Hole Conductor Free Perovskite Solar Cells**”, **Perovskite Photovoltaics-basic to advanced concepts and implementation**. Elsevier (2018), 289-321. **(Cited by-3)**
3. V. Manjunath, Ramya Krishna, S. Maniarasu, E. Ramasamy, S. Shanmugasundaram, **Ganapathy. V***, “**Perovskite Solar Cell Architectures**” **Perovskite Photovoltaics-basic to advanced concepts and implementation**. Elsevier (2018), 89-121. **(Cited by-1)**
4. V. Manjunath, S. Maniarasu, **Ganapathy. V**, E. Ramasamy, “**Flexible Perovskite Solar Cells**” **Perovskite Photovoltaics-basic to advanced concepts and implementation**. Elsevier (2018), 341-371. **(Cited by-5)**
5. **Ganapathy. V***, E. Ramasamy, B. Gowreeswari, “**Economical and Highly Efficient Non-Metal Counter Electrode Materials for Stable Dye-sensitized Solar Cells**” **Dye-sensitized Solar Cell Mathematical Modeling, Optimization and Design**. Elsevier (2019), 397-435. **(Cited by-6)**

List of Publications (*Total citation: 2153, h-index: 23*)

After joining in ARCI (2015-till now)

1. Kumar Swamy Reddy, Ganapathy. V, S. Badhulika, P. H. Borse, **Self-Powered Photodetctors based on Cu₂SnS₃/TiO₂ Nanorod Heterojunctions**, **ACS Applied Nano Materials** (2025), 8, 3825-3838 **(IF: 5.3)**
2. Kumar Swamy Reddy, Aswin Kumar, R. Akash, S. Badhulika, E. Ramasamy, **Ganapathy. V***, P. H. Borse, **Ambient processed highly stable self-powered photodetector lead-free Cs₂AgBiBr₆**

double perovskite photodetector in HTM-free architecture with carbon as electrode, *Solar Energy* (2024), 283, 112989 (IF: 7.1)

3. Ramya Krishna, Bhyrappa.P, Sudakar. C, Ganapathy. V, Easwaramoorthi. R, **Performance-stability correlation in MAPbI₃ based perovskite solar cells developed using ink derived from single crystals**, *Optical Materials* (2024), 153, 115538. (IF: 3.9)
4. Kumar Swamy Reddy, Ganapathy. V, S. Badhulika, P. H. Borse, **Self-powered photodetector based on 1D TiO₂-3D CdS mixed dimensional heterostructure fabricated at low temperature**, *Solar Energy* (2024), 274, 112594 (IF: 7.1)
5. R. K. Dileep, N. Maticiuc, F. Mathies, Igal Levine, J. Dagar, G. Paramasivam, S. Mallick, T. N. Rao, E. Unger, Ganapathy. V* **Hybrid aromatic fluoro amine-modified SnO₂ electron transport layers in Perovskite solar cells for enhanced efficiency and stability**, *Solar RRL* (2024), 8, 2300921 (IF: 9.2)
6. R. K. Dileep, Igal Levine, O. Karalis, H. Hempel, E. Ramasamy, S. Mallick, T. N. Rao, E. Unger, Ganapathy. V* **Charge carrier dynamics at Carbon/perovskite interface: Implications on Carbon-based HTM-free solar cell stability**, *Solar RRL* (2024), 8, 2300960 (IF: 9.2)
7. R. K. Dileep, Thulasi Raman, E. Ramasamy, S. Mallick, T. N. Rao, Ganapathy. V* **Low temperature curable TiO₂ sol for Separator, HTM free Carbon-based perovskite solar cells**, *Materials Advances* (2024), 4, 539-548 (IF: 5) [Selected as cover article]
8. Kumar Swamy Reddy, Smrutiranjan Panda, E. Ramasamy, Ganapathy. V*, P. H. Borse, S. Badhulika, **Exploring the impact of electron transport layer thickness and morphology on perovskite infiltration and photoresponse in HTM-free self-powered photodetector**, *Solar Energy* (2023), 265, 112106 (IF: 7.1)
9. Kumar Swamy Reddy, Smrutiranjan Panda, E. Ramasamy, S. Badhulika, Ganapathy. V*, P. H. Borse, **Fabrication of self-powered broadband photodetector by 50% replacement of Pb by Mg in CH₃NH₃Pb_{0.5}Mg_{0.5}Cl₂I perovskite lattice**, *Materials Advances* (2023), 4, 6552. (IF: 5.0) [Selected as cover article]
10. A. Jagadeesh, G. Veerappan, P. S. Devi, K. N. N. Unni, S. Suraj, **Synergetic effect of TiO₂/ZnO bilayer photoanodes realizing exceptionally high Voc for dye-sensitized solar cells under outdoor and indoor illumination**, *Journal of Material Chemistry A* (2023), 884, 161061. (IF: 11.9)
11. K. V. Seshaiah, R. K. Dileep, E. Ramasamy, Ganapathy. V, * S. S. K. Raavi, **Deciphering the role of (Er³⁺/Nd³⁺) co-doping effect on TiO₂ as an improved electron transport layer in perovskite solar cells**, *Solar Energy* (2023), 262, 111801. (IF: 7.2)
12. Maithili K. Rao, M. Selvakumar, M. G. Mahesha, S. Paramasivam, R. K. Dileep, N. S. Prabhu, Ganapathy. V*, S. Senthilkumar, S. D. Kamath, **Pyrrolidinium induced templated growth of 1D-3D halide perovskite heterostructure for solar cell applications**, *Materials Chemistry and Physics* (2023), 303, 127668 (IF: 4.7)
13. Ramya Krishna, Bhyrappa.P, Sudakar. C, Ganapathy. V, Easwaramoorthi. R, **MAPbI₃ single crystal derived precursor ink for stable and efficient Perovskite Solar Cells**, *Journal of Alloys and Compounds* (2023), 944, 169082 (IF: 6.3)
14. S. Mandati, Ramya Krishna, Ganapathy. V, E. Ramasamy, **A promising Scalable Bar coating approach using Single Crystalline derived Precursor Ink for High performance Large area Perovskite Solar Cells**, *Materials Today Chemistry* (2023), 29, 101415 (IF: 7.6)

15. R. K. Dileep, E. Ramasamy, K. Suresh, S. Mallick, T. N. Rao, **Ganapathy. V*** Compositional engineering and surface passivation for carbon-based perovskite solar cells with superior thermal and moisture stability, *Journal of Power sources* (2023), 559, 232645. (IF: 9.8)
16. Ramya Krishna, **Ganapathy. V**, Bhyrappa.P, Sudakar. C, Easwaramoorthi. R, Growth of single-crystalline MAPbI_3 perovskite film by a modified space-confined inverse temperature crystallization method, *Surfaces and Interfaces* (2023), 36, 102475. (IF: 6.1)
17. S. Supraja, R. K. Dileep, E. Ramasamy, S. Shanmugasundaram, **Ganapathy. V***, Influence of bi-phasic TiO_2 as Low-temperature curable Electron transport layer for efficient perovskite solar cells, *Solar Energy* (2022), 247, 308-314. (IF: 7.1)
18. Ramya Krishna, **Ganapathy. V**, Bhyrappa.P, Sudakar. C, Easwaramoorthi. R, Single crystal hybrid lead halide perovskites: Growth, properties, and device integration for solar cell application, *Crystal Growth & Design*, (2022), 22, 6338-6362. (IF: 4.0)
19. R. Munniramaiah, J. M. Fernandes, M. Manivel Raja, D. B. Padmanaban, P. Supraja, M. Rakshita, N. Purushotham Reddy, G. Maharana, M. Kovendhan, **Ganapathy. V**, G. Laxminarayana, R. Rakesh Kumar, D. Haranath, Paul Joseph Daniel, Mechanically stable ultrathin flexible metallic Au/Pt/Au tri-layer as an alternative transparent conducting electrode for optoelectronic device applications, *Vacuum*, (2022), 206, 111487 (IF: 4.1)
20. R. Munniramaiah, N. Purushotham Reddy, R. Santhosh, J. M. Fernandes, D. B. Padmanaban, G. Maharana, M. Kovendhan, **Ganapathy. V**, G. Laxminarayana, M. Banavath, Paul Joseph Daniel, Solvent effect on the optoelectronic properties of fluorine doped SnO_2 thin films prepared by spray-pyrolysis, *Surfaces and Interfaces* (2022), 33, 102174. (IF: 6.1)
21. S. Mandati, R. K. Dileep, **Ganapathy. V**, E. Ramasamy, Large area bar coated TiO_2 electron transport layers for perovskite solar cells with excellent performance homogeneity, *Solar Energy* (2022), 240, 258-268. (IF: 7.1)
22. Ramya Krishna, **Ganapathy. V**, Bhyrappa.P, Sudakar. C, Easwaramoorthi. R, Dual functional inorganic CuSCN for efficient hole extraction and moisture sealing of MAPbI_3 perovskite solar cells, *Materials Advances* (2022), 3, 2000-2010 (Selected as Front cover article) (IF: 5.0)
23. P. Vijendar, M. Suresh, R. K. Dileep, B. Ramya Krishna, P. Uday bhaskar, E. Ramasamy, **Ganapathy. V***, Temperature dependence of MAPbI_3 films by quasi-vapor deposition techniques and impact on photovoltaic performance and stability of perovskite solar cells, *Journal of Alloys and Compounds* (2021), 888, 161448. (IF: 6.3)
24. M. Suresh, K. Vaithinathan, T. B. Korukonda, S. C. Pradhan, S. Suraj, E. Ramasamy, **Ganapathy. V***, Ambient processed perovskite sensitized porous TiO_2 nanorods for highly efficient and stable perovskite solar cells, *Journal of Alloys and Compounds* (2021), 884, 161061. (IF: 6.3)
25. S. Arun Kumar, R. K. Dileep, J. Manonmani, **Ganapathy. V***, J. Senthilselvan*, Enhanced Power-Conversion Efficiency using $\text{Ce}^{3+}:\text{SrF}_2$ Down-shifting Nanophosphor based Photoelectrode for Dye-Sensitized Solar Cell Application, *ACS Applied Energy Materials* (2021), 4, 7112. (IF: 6.9)
26. R. K. Dileep, S. Mandati, E. Ramasamy, S. Mallick, T. N. Rao, **Ganapathy. V***, Rapid assessment of photovoltaic activity of perovskite solar cells by photoluminescence spectroscopy, *Materials Letters* (2021), 299, 130056. (IF: 3.5)
27. A. Ashina, B. Ramya Krishna, E. Ramasamy, N. Chundi, S. Sakthivel, **Ganapathy. V***, Dip coated SnO_2 film as electron transport layer for low-temperature processed planar perovskite solar cells, *Applied Surface Science Advances* (2021), 4, 100066. (IF: 6.2) (Cited by-1)

28. R. K. Dileep, M. K. Rajbhar, A. Ashina, E. Ramasamy, S. Mallick, T. N. Rao, **Ganapathy. V***, A Facile Co-precipitation method for Synthesis of Zn doped BaSnO₃ nanoparticles for photovoltaic application, *Materials Chemistry and Physics* (2021), 258, 123939 (IF: 4.7)

29. A. S. Ganeshraja, S. Maniarasu, P. V. Reddy, **Ganapathy. V***, K. Vaithinathan, K. Nomura, J. Wang. Hierarchical Sn and AgCl co-doped TiO₂ Microspheres as Electron Transport Layer for Enhanced Perovskite Solar Cell Performance. *Catalysis Today* (2020), 355, 333-339. (IF: 6.5) (Cited by-3)

30. K. V. Sesaiah, A. Das, R. K. Dileep, C. Goautham, P. Supriya, **Ganapathy. V**, E. Ramasamy, P. Meduri, S. Asthana, M. Deepa, S. S. K. Raavi, Critical role of vacancies in Neodymium doped Titania photoanodes for enhanced sensitized solar cells and photo-electrochemical cells, *Solar Energy Materials & Solar Cells* (2021), 220, 110843. (IF: 7.3) (Cited by-2)

31. R. Ramarajan, N. Purushotham Reddy, R. K. Dileep, M. Kovendhan, **Ganapathy. V**, K. Thangaraju, Paul Joseph Daniel, Large-area spray deposited Ta-doped SnO₂ thin film electrode for DSSC application, *Solar Energy* (2020), 211, 547-559. (IF: 7.1) (Cited by-7)

32. Ramya Krishna, **Ganapathy. V**, Bhyrappa.P, Sudakar. C, Easwaramoorthi. R, Stability of MAPbI₃ perovskite grown on planar and mesoporous electron-selective contact by inverse temperature crystallization, *RSC Advances* (2020), 10, 30767. (IF: 4.0) (Cited by-3)

33. N. Purushotham Reddy, M. Kovendhan, R. K. Dileep, **Ganapathy. V**, K. Saravana Kumar, Paul Joseph Daniel, Synthesis and characterization of nanostructured La-doped BaSnO₃ for dye-sensitized solar cell application, *Materials Chemistry and Physics* (2020), 250, 123137. (IF: 4.7) (Cited by-3)

34. N. Purushotham Reddy, R. K. Dileep, M. Kovendhan, **Ganapathy. V***, Paul Joseph Daniel, Prickly pear fruit extract as photosensitizer for dye-sensitized solar cell, *Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy* (2020), 228, 117686. (IF: 4.8) (Cited by-5)

35. S. Velu, H. Muniyasamy, A. Siva, M. Suresh, **Ganapathy. V**, M. Sepperumal, Design and synthesis of organic sensitizers containing carbazole and triphenylamine pi-bridged moiety for dye-sensitized solar cells, *J. of Iranian Chemical Society* (2019), 16, 1923-1937. (IF: 2.2) (Cited by-7)

36. R. K. Dileep, G. Kesavan, V. Reddy, M. K. Rajbhar, S. Shanmugasundaram, E. Ramasamy, **Ganapathy. V***, Room temperature curable carbon cathode for hole-conductor free perovskite solar cells, *Solar Energy* (2019), 187, 261-268. (IF: 7.1) (Cited by-15)

37. E. Ramasamy, K. Vaithinathan, K. Ramesh Kumar, **Ganapathy. V**, Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells, *Materials Letters* (2019), 250, 51-54. (IF: 3.5) (Cited by-15)

38. S. Maniarasu, M. K. Rajbhar, R. K. Dileep, E. Ramasamy, P. V. Reddy, **Ganapathy. V***, Hole-conductor free ambient processed mixed halide perovskite solar cells. *Materials Letters* (2019), 245, 226-229. (IF: 3.5) (Cited by-11)

39. S. B. Subramanian, A. Ramani, **V. Ganapathy**, V. Anbazhagan, Preparation of self-assembled platinum nanoclusters to combat salmonella typhi infection and inhibit biofilm formation. *Colloids and Surfaces B: Biointerfaces* (2018), 171, 75-84. (IF: 6.0) (Cited by-13)

40. S. Maniarasu, T. B. Korukonda, V. Manjunath, E. Ramasamy, R. Mohan, **Ganapathy. V ***, Recent Advancement in Metal Cathode and Hole-Conductor-free Perovskite Solar Cells for Low-cost

and High stability: A Route Towards Commercialization. Renewable and Sustainable Energy Reviews (2018), 82, 845-857. (IF: 16.7) (Cited by-74)

41. E. Ramasamy, P. Kathirvel, S. Kumar, S. Koppolu, Ganapathy. V. **Rapid and Scalable Synthesis of Crystalline SnO₂ nanoparticles with Superior Photovoltaic Properties by Flame Oxidation.** MRS Communications (2017), 7, 862-866. (IF: 2.9) (Cited by-1)
42. Ganapathy. V. * K. Zhang, S. Soman, N. Heo, J. H. Park. **Stibnite Sensitized Hollow Cubic TiO₂ Photoelectrodes for Organic-Inorganic Heterojunction Solar Cells.** Solar Energy (2017), 157, 434-440. (IF: 7.1) (Cited by-5)
43. V. Karthikeyan, S. Maniarasu, V. Manjunath, E. Ramasamy, Ganapathy. V * **Hydrothermally Tailored Anatase TiO₂ Nanoplates with exposed {111} facets for highly efficient Dye-sensitized solar cells.** Solar Energy (2017), 147, 202-208. (IF: 7.1) (Cited by-12)
44. G. A. Sundaram, M. Yang, K. Nomura, S. Maniarasu, Ganapathy. V, T. Liu, J. Wang. ¹¹⁹Sn Mossbauer and ferromagnetic studies on hierarchical tin and nitrogen co-doped TiO₂ microspheres with efficient photocatalytic performance. J. Physical Chemistry C (2017), 121, 6662-6673. (IF: 4.1). (Cited by-16)
45. N. Islavath, S. Saroja, K. Srinivasa Reddy, P. C. Harikesh, V. Ganapathy, E. Ramasamy, S. V. Joshi. **Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient processed perovskite solar cells.** J. Energy Chemistry (2017), 26, 584-591. (IF: 13.5). (Cited by-19)
46. K. Zhang, S. Ravishankar, M. Ma, Ganapathy Veerappan, J. Bisquert, F. F. Santiago, J. H. Park. **Overcoming Charge Collection Limitation at Solid/Liquid Interface by a controllable Crystal Deficient Overlayer,** Advanced Energy Materials (2017), 7, 1600923. (IF: 29.6). (Cited by-56)
47. Ganapathy. V, K. Zhang, M. Ma, B. Kang, J. H. Park. **High-reversible capacity of Perovskite BaSnO₃/rGO composite for Lithium-Ion Battery Anodes.** Electrochimica Acta (2016), 214, 31-37. (IF: 7.3). (Cited by-18)
48. K. Zhang, L. Wang, J. K. Kim, M. Ma, V. Ganapathy, C. L. Lee, K. J. Kong, H. Lee, J. H. Park, **An order/disorder/water junction system for highly efficient Co-Catalyst-Free Photocatalytic Hydrogen Generation.** Energy & Environmental Science (2016), 9, 499-503. (IF: 39.7) (Cited by-251)

Before joining in ARCI-2010-2015

49. K. L. Vincent Joseph, A. Anthony, E. Ramasamy, D. V. Shinde, V. Ganapathy, S. Karthikeyan, J. Lee, T. Park, S. W. Rhee, K.S. Kim, J. K. Kim. **Cyanoacetic Acid Tethered Thiophene for well-matched LUMO level in Ru (II)-Terpyridine Dye-Sensitized Solar Cells.** Dyes and Pigments (2016), 126, 270-278. (IF: 5.1) (Cited by-9)
50. H. Kim, ¹¹⁹Ganapathy. V, ¹¹⁹D. H. Wang, J. H. Park. **Large Area Platinum and Fluorine-doped Tin Oxide-free Dye sensitized Solar Cells with Silver-Nanoplate Embedded Poly (3, 4-Ethylenedioxythiophene) Counter Electrode.** Electrochimica Acta (2016), 187, 218-223. (IF: 7.3) ¹¹⁹Equal Contribution. (Cited by-9)
51. C. J. Mo, ¹¹⁹V. Ganapathy, ¹¹⁹M. Kim, J. H. Park. **Self-organized Formation of Embossed Nanopatterns on various Metal Substrates: Application To Flexible Solar Cells.** Electrochimica Acta (2015), 176, 636-641. (IF: 7.3) ¹¹⁹Equal Contribution. (Cited by-1)
52. Ganapathy. V, S. Yu, D. H. Wang, W. I. Lee, J. H. Park. **Facile Control of Intra-and Inter particle Porosity in Template-Free synthesis of Size-Controlled Nanoporous TiO₂ beads for**

Efficiency Organic-Inorganic Heterojunction Solar Cells. *Journal of Power Sources* (2015), 279, 72-79. (IF: 9.7) (Cited by-6)

53. K. B. A. Ahmed, S. Subramanian, V. Ganapathy, N. Hari, A. Sivasubramanian, V. Anbazhagan. β -siosterol-D-glucopyranoside Isolated from *Desmostachyabipinnata* mediate Photoinduced Rapid Green Synthesis of Silver Nanoparticles. *RSC Advances* (2014), 4, 59130-59136. (IF: 4.0) (Cited by-21)

54. J. K. Kim^{##}, V. Ganapathy^{##}, N. Heo, D. H. Wang, J. H. Park. Efficient Hole Extraction from Sb_2S_3 Heterojunction Solar Cells by the Solid transfer of Pre-formed PEDOT: PSS film. *J. Physical Chemistry C* (2014), 118, 22672-22677. (IF: 4.1) "Equal Contribution. (Cited by-27)

55. V. Chakrapani, K. H. Ayaz Ahmed, V. Vinod Kumar, V. Ganapathy, S. Philip Anthony, V. Anbazhagan. A facile route to synthesize casein capped copper nanoparticles: an effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan. *RSC Advances* (2014), 4, 33215-33221. (IF: 4.0) (Cited by-43)

56. H. Kim^{##}, Ganapathy. V^{##}, J. H. Park. Conducting Polymer coated Non-woven Graphite-Fiber film for Dye-sensitized Solar cells: Superior Pt-and FTO-free counter electrodes. *Electrochimica Acta*. (2014), 137, 164-168. (IF: 7.3) "Equal Contribution. (Cited by-27)

57. K. B. A. Ahmed, S. Subramanian, A. Sivasubramanian, V. Ganapathy, V. Anbazhagan. Preparation of gold nanoparticles using *salicorniabrachiata* plant extract and evaluation of catalytic and antibacterial activity. *Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy* (2014), 130, 54-58. (IF:4.8) (Cited by-107)

58. S. Venkatakrishnan, V. Ganapathy, E. Elamparuthi, V. Anbazhagan. Aerobic synthesis of biocompatible copper nanoparticles: Promising antibacterial agent and catalyst for nitroaromatic reduction and C-N cross coupling reaction. *RSC Advances* (2014), 4, 15003-15006. (IF: 4.0) (Cited by-32)

59. V. Ganapathy, D. W. Jung, J. Kwon, J. Choi, H. Nansra, J. H. Park, G. Ra, Yi. Multi Functionality of Macroporous TiO_2 spheres in Dye-sensitized and Hybrid Heterojunction solar cells. *Langmuir* (2014), 30, 3010-3018. (IF: 4.3). (Cited by-44)

60. V. Ganapathy, E.H. Kong, Y.C. Park, Hyun. M. Jang, Shi-Woo Rhee. Cauliflower-like SnO_2 Hollow Microspheres as Photoanode with Carbon fiber Counter Electrode for High-Performance Quantum Dot-and Dye-Sensitized Solar Cells. *Nanoscale* (2014), 6, 3296-3301. (IF: 8.3) (Cited by-50)

61. T. Pazhanivel, V. P. Devarajan, S. Bharathi, K. Senthil, V. Ganapathy, K. Yong, N. Devaraj. Systematic Investigation on the Structure and Photophysical Properties of $CdSe$, $CdSe/ZnS$ QDs and their Hybrids with Beta Carotene. *RSC Advances* (2013), 3, 26116-26126. (IF: 4.0) (Cited by-8)

62. J. Kwon, ^{##} V. Ganapathy^{##}, Y. H. Kim, K. D. Song, H. G. Park, Y. Jun, P. J. Yoo, J. H. Park. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells. *Nanoscale* (2013), 5, 7838-7844. (IF: 8.3) (Cited by-62) "Equal Contribution.

63. V. Ganapathy, B. Karunagaran, Shi-Woo Rhee. Amorphous Carbon Counter Electrode for Low-cost and efficient Dye-sensitized Solar Cells. *Renewable energy* (2012), 41, 383-388. (IF: 8.6) (Cited by-60)

64. **V. Ganapathy**, W. Kwon, Shi-Woo Rhee. **Carbon-nanofiber counter electrodes for quasi-solid state dye-sensitized Solar Cells**. *Journal of Power Sources* (2011), 196, 10798-10805. **(IF: 9.7) (Cited by-63)**
65. A. Anthonysamy, Y. Lee, B. Karunagaran, **V. Ganapathy**, Shi-Woo Rhee, S. Karthikeyan, Kwang Soo Kim, Min Jae Ko, Nam-Gyu Park, M. J. Ju, Jin Kon Kim. **Molecular design and synthesis of Ruthenium (II) sensitizers for high efficient Dye-sensitized Solar Cells: Combined experimental and DFT-TDDFT computational studies**. *Journal of Material Chemistry* (2011), 21, 12389-12397. **(IF: 6.6) (Cited by-42)**
66. **V. Ganapathy**, B. Karunagaran, Shi-Woo Rhee. **Sub-micrometer-sized Graphite as a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells**. *ACS Applied Material & Interfaces* (2011), 3, 857-862. **(IF: 10.3) (Cited by-291)**
67. **V. Ganapathy**, B. Karunagaran, Shi-Woo Rhee. **Improved performance of dye-sensitized solar cells with TiO_2 / Alumina core-shell formation using atomic layer deposition**. *Journal of Power Sources* (2010), 195, 5138-5143. **(Top 25 Hottest Articles from April to June 2010 & July to September 2010)**. **(IF: 9.7) (Cited by-158)**

Other Technical Articles in Magazines and Newsletters

1. **Dr. V. Ganapathy** and Dr. P. B. Borse, Indian Scientists develops lead-free perovskite self-powered broadband photodetector for safer solar energy generation, **Ministry of Science and Technology website, DST website and various other news platforms, 29th Dec 2023**.
2. **Dr. V. Ganapathy**, Low-cost perovskite solar cells with superior thermal and moisture stability developed indigenously by Indian Scientists, **Ministry of Science and Technology website, DST website and various other news platforms, 14th July 2023**.
3. Dr. R. Easwaramoorthi and **Dr. V. Ganapathy**, Perovskite Solar Cells with enhanced stability fabricated using inorganic material, **Ministry of Science and Technology website, DST website and various other news platforms, 31st Mar 2023**.
4. Dr. R. Easwaramoorthi and **Dr. V. Ganapathy**, Copper thiocyanate to eliminate moisture leaks in perovskite PV cells, **PV magazine, 31st Mar 2023**.
5. **Dr. V. Ganapathy**, Indian Scientists develop efficient and durable solar cells by tuning the length and porosity of nanorods, **Ministry of Science and Technology website, DST website and various other news platforms, 31st Jan 2022**.
6. **Dr. V. Ganapathy**, Highly conducting, stable carbon cathode bring down production costs of next-generation solar cells, **DST website and DD news, 11th Feb 2020**.

Reviewer for International Publications

- American Chemical Society (ACS)
- Elsevier
- Royal Society of Science (RSC)
- Springer
- Wiley

Reviewer for International Proposals

- Netherlands organization for Scientific Research (NWO), Netherlands
- Faculty Research Grant (FRG20), American University of Sharjah, UAE
- Faculty Research Grant (FRG19), American University of Sharjah, UAE
- Faculty Research Grant (FRG18), American University of Sharjah, UAE
- Collaborative Grant, Qatar University, Qatar

Reviewer for Masters and Ph.D Viva-Voce

- Ph.D Viva-Voce Examiner, Anna University
- Masters Viva-Voce Examiner, B.S. Abdur Rahman Crescent Institute of Science & Technology

Invited Talks (Selectively)

1. Ganapathy. V*, “Materials and Processes for Organic-Inorganic Halide Perovskite Solar Cells”

Two days Workshop on perovskite Solar Cells, 15-16th Dec, 2023, Bharathidasan University, Tiruchirappalli, Tamilnadu.

2. Ganapathy. V*, “Semiconductors for Renewable Energy” Industrial Lecture Series, IIT Tirupati, 12th Feb, 2024, Tirupati, Andhra Pradesh

Ganapathy. V*, “Introduction to Perovskite-solar cells: Fundamentals; Do’s and Don’ts” India-UK joint Hands of training on Solar Energy Conversion Devices, VIT, Sep-22-23rd, 2022, Vellore, Tamilnadu

3. Ganapathy. V*, “Challenges in Large-scale fabrication of perovskite-solar cells” Webinar on Sustainable Energy Technologies, IIT Guwahati, April 28, 2022, Guwahati, Assam

4. Ganapathy. V*, “Emerging Trends in Photovoltaic Technology” Workshop on Energy Conversion and Storage Devices, IIT Hyderabad, July 1-5, 2021, Hyderabad, Telangana.

5. Ganapathy. V*, “Solar Cells and Module Fabrication” Workshop on Energy Conversion and Storage Devices, IIT Hyderabad, July 1-5, 2021, Hyderabad, Telangana.

6. Ganapathy. V*, “Moisture Resistant Quasi-Two Dimensional Perovskite and Carbon Electrodes for Stable Perovskite Solar Cells” India-UK 2nd International Conference on Advanced Nanomaterials for Energy, Environment and Healthcare Applications, Feb-4-6, 2019, Tiruchirappalli, Tamilnadu.

7. Ganapathy. V*, “Nanostructured Materials for Photovoltaic Applications” 3rd International Conference on Nanomaterials: Synthesis, Characterization and Applications, May 11-13, 2018, Kottayam, Kerala.

8. V. Ganapathy * “Next-generation photovoltaics for sustainable green energy” Nanofluid Application for Heat-Transfer and Energy Systems & Simulation using CFD, Andhra University, Sept. 2016, Visakapatnam, Andhra Pradesh.

9. Ganapathy. V*, “Inorganic sensitizers and nanostructured metal oxides for next-generation solar cells. ARCI, Hyderabad, 2014.

10. Ganapathy. V*, “Alternative counter electrode and recombination free photoelectrode for highly efficient and stable dye-sensitized solar cells. CSIR-CECRI, Karaikudi, 2012.

Ph.D Dissertation Supervised:

Completed: 1

Ongoing: 1

1. **Ms. Reshma K. Dileep:** Carbon based perovskite solar cells from labscale to large area devices with high stability and reproducibility, **Ph.D Degree awarded from IITB @ 2024**

UG/PG Dissertation Supervised: Totally 19

1. Synthesis and Development of Hole-conductor Free Mixed Halide based Perovskite Solar Cell, by **Mr. M. Suresh, M.Tech: 2015-16. (Postdoc @ Helmholtz-Zentrum Berlin)**
2. Design and Fabrication of Perovskite Solar Cell by Semi-vapor deposition, by **Mr. P. Vijendar Reddy, M. Tech: 2016-17. (Pursuing PhD @ NPL Delhi)**
3. Hole conductor and Metal cathode free Mixed Cation Perovskite Solar Cells, by **Ms. Reshma K. Dileep, M. Tech: 2017-18. (Presently SRF @ ARCI & Pursuing Ph.D @ IITB).**
4. Inorganic Hole Transport Material for Highly Stable Perovskite Solar Cells, by **Ms. Ashina, M.Sc: 2017-18. (Presently School Teacher).**
5. Synthesis of Lanthanum doped Tin Oxide Beads for ETM layer in Perovskite Solar Cells, by **Mr. Aditya, M. Tech: 2018-19.**
6. Synthesis and Fabrication of Highly Stable Dion-Jacobson Quasi 2D Perovskite based Solar Cell, by **Mr. Arya Vidhan, M. Tech: 2018-19. (Pursuing Ph.D @ IITB).**
7. Metal Cathode free Flexible Perovskite based Solar Cell, by **Mr. Mohan Kumar, M. Tech: 2018-19. (Pursuing Ph.D @ IISC).**
8. Impact of passivation in MAPbI_3 film by a fluorinated 2D cation for enhanced stability, by **Mr. Thulasi Raman, M.Sc: 2020-21. (Pursuing Ph.D @ Univ. of Manitoba, Canada).**
9. Development of Transparent Conductive Electrode by Nano Soldering for Opto-Electronic devices, by **Mr. S. Adil, M. Tech: 2021-22**
10. Alkali metal Fluoride doped Electron transport layer for highly stable Low-Temperature Perovskite Solar Cell, **Mr. Nithish Molla, M. Tech: 2021-22 (Executive Trainee @ NPCIL).**
11. Synthesis of single crystalline Titanium Dioxide by utilizing Amino group as surfactant, by **Mr. P. Dhanush, M.Sc: 2021-22.**
12. Wide Bandgap Perovskites for Indoor Photovoltaic Applications, **Ms. Sri Dharshini: M.Sc: 2024-25**
13. Ambient Processed Self-Powered lead-free $\text{Cs}_2\text{AgBiBr}_6$ double perovskite, **Mr. Aswin Kumar, M.Tech: 2024-25**

14. Fabrication of Carbon-based Perovskite Solar Cells, Mr. Akash, M.Tech: 2024-25

15. Slot-die coating of ETL for Perovskite Solar Cells, Mr. Sai Suhas, (B.Tech: 2024-25

16. Fabrication of Vanadium Redox Flow Battery, Ms. M. Jyoshna, B.Tech: 2024-25

Man-Power Trained

1. **Ms. Tulja Bhavani**, Synthesis and Characterization of 1-D Nano-Structured Perovskite for Photovoltaic Applications, **PGTP: 2015-16. (Postodoc @ Purdue Univ).**
2. **Mr. Vishesh Manjunath**, Improving the Efficiency of Perovskite Solar Cell, **PGTP: 2016-17. (Completed Ph.D @ IIT Indore)**
3. **Mr. P. Vijendhar Reddy**, Design and Fabrication of Perovskite Solar Cell by Semi-vapor deposition, **PGTP: 2017-18. (Pursuing Ph.D @ NPL Delhi)**
4. **Ms. Reshma K. Dileep**, Hole conductor and Metal cathode free Mixed Cation Perovskite Solar Cells, **PGTP: 2017-18. (Presently SRF @ ARCI & Pursuing Ph.D @ IITB).**
5. **Ms. Ashina** Inorganic Hole Transport Material for Highly Stable Perovskite Solar Cells, **M.Sc: 2018-19. (Presently school teacher)**
6. **Mr. Smrutiranjan Panda**, Inorganic hole transport material for carbon based perovskite solar cells, **GTP: 2022-23. (Presently Project associate @ IISC)**

Affiliation to Professional societies

Electrochemical Society (ECS)

International Solar Energy Society (ISES)

Energy Science Society of India (ESSI)

Contact Information

Dr. V. Ganapathy

Centre for Solar Energy Materials, ARCI

Balapur, Hyderabad

Tel: +91-40-24452466, Email: ganagy@arci.res.in ; ganagv@gmail.com